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The TURBIT-3 computer code has been used for the direct numerical simulation of
Bénard convection in an infinite plane channel filled with air. The method is based on
the three-dimensional non-steady-state equations for the conservation of mass,
momentum and enthalpy. Subgrid-scale models of turbulence are not required, as
calculations with different grids show that the spatial resolution of grids with about
32% x 16 nodes provides sufficient accuracy for Rayleigh numbers up to Ra = 3-8 x 105,
Hence this simulation model contains no tuning parameters.

The simulations start from nearly random initial conditions. This has been found to
be essential for calculating flow patterns and statistical data insensitive to grid para-
meters and agreeing with experimental experience. The numerical results show the
theoretically predicted ‘skewed varicose’ instability at Ka = 4000. Warm and cold
‘blobs’ are identified as causing temperature-gradient reversals for all the high
Rayleigh numbers under consideration. The calculated wavelengths and the corre-
sponding flow regimes observed in the transition range confirm the stability maps
determined theoretically. In the turbulent range the wavelengths agree qualitatively
with low-aspect-ratio experiments. Accordingly, the Nusselt numbers lie at the upper
end of the scatter band of experimental data, as these also depend on the aspect ratio.
Appropriately normalized, the velocity and temperature fluctuation peaks are inde-
pendent of the Rayleigh number. The vertical profiles agree largely with experimental
data and, especially in case of temperature statistics, exhibit comparable or less scatter.

1. Introduction

In this paper the classical Bénard problem of thermal convection in a horizontal
infinite fluid layer heated uniformly from below is investigated by direct numerical
simulation. The method is based on the solution of the complete, non-steady-state,
three-dimensional equations of the conservation of mass, momentum and heat. The
gross structure of the turbulent fields is described directly by a finite-difference grid.
If grids with poor resolution are used, subgrid-scale structure models are necessary to
describe the exchanges of momentum and heat of the small turbulence elements not
resolved by the grid.

Although direct numerical simulation has already been applied to a few cases of
Bénard convection, it has not yet been applied to the investigation of turbulent con-
vection at high Rayleigh numbers. Earlier work, as presented by Deardorff & Willis
(1965) and Lipps & Somerville (1971), is based on a two-dimensional formulation of
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the fundamental equations without the use of a subgrid-scale model. The two-
dimensional simulations run into various problems, for example the computed heat
transfer is too high, and the transition from laminar to turbulent flow is calculated to
occur at Rayleigh numbers higher than those observed experimentally (Deardorff &
Willis 1965). In the three-dimensional simulations by Lipps & Somerville (1971) and
Ozoe et al. (1976) no subgrid-scale models were used; instead, simulations were carried
out mainly for laminar and transition flow regimes. For turbulent convection only one
simulation case is known for Ra = 25000 (Lipps 1976). The problems stated are the
strong influences of the grid widths chosen and of the periodicity lengths on the
calculated statistical data.

In the present work turbulent natural convection at low and medium Rayleigh
numbers is directly simulated numerically by the TURBIT-3 computer code
(Grotzbach 1979) based on the complete, three-dimensional, non-steady-state equations
of the conservation of mass, momentum and enthalpy. The aim of this work is to show
that by use of currently available computer systems this three-dimensional scheme
may be applied to the Rayleigh-Bénard convection of air with Rayleigh numbers up
to 381225 without using a subgrid-scale model. Generally, agreement with experi-
mental data can be obtained for all flow conditions and for most of the statistical data
of the flow fields. The only condition for obtaining reasonable results is the use of
nearly randomly distributed initial values and sufficiently fine grids. For the highest
Rayleigh number, for instance, this agreement can be obtained from simulations
using 32 x 162 mesh points. Increasing the node numbers up to 64 x 322 shows that
about 322 x 16 mesh points are required to get results largely independent of the grids.

2. Basic equations of the method of simulation
2.1. Basic equations of motion

The basic equations for laminar and turbulent convection are the equations for the
conservation of mass, momentum and energy. For simplicity, the Boussinesq approxi-
mation is adopted. This implies the assumption that the physical propertiesin all terms
of these equations can be considered as constant, except for the buoyancy term. If
Cartesian co-ordinates are used with 2, and x, horizontal and x, directed upwards then
the equations for the velocity components u; (¢ = 1, 2, 3), pressure p and temperature

T are pu,
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The Einstein summation rule is applied to all terms bearing the same subscript twice.
Equations (1) are normalized with the plate spacing D (variables marked by ~ are
dimensional), the difference in temperatures between the bottom and top walls
AP, = T,,—T,,, the time scale f = D/, and the pressure $ = pi2, where p is the
density. Thus the dimensionless numbers used are the Reynolds number Re, = #,D /9,
the Prandtl number Pr =9/, and the Rayleigh number, Ra = §f AT, D?/p@, where
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g is the acceleration due to gravity, J is the volume-expansion coefficient, p is the
kinematic viscosity and & is the temperature-conductivity coefficient. The velocity
scale 9, = (§8AT, D)* was chosen so as to normalize the buoyancy term to unity. The
reference temperature Thes in the buoyancy term is set equal to the volume average in
the entire channel *(T'), in order to avoid a net contribution to the buoyancy term.

2.2. Numerical model
Finite-difference formulas for the numerical solution of the differential equations (1)
are derived by the method also used by Schumann (1973, 1975a). These equations are
integrated formally over the mesh volume V = Az;Az,Ax,, which furnishes the
volumetric average for any variable y:

1
V5 — [ ’ ’ ’
) Aa:l AQ?2A£Z3 .[Az, .[Az, J;h y(xl: Lo, xa) de dx2 dxl' (2)

By applying Gauss’s theorem, the volume average of the partial derivatives is trans-
formed directly into a finite-difference form of the surface average values %y, where ¢
denotes the index of the direction normal to the respective mesh cell surface:

Dy 1. _ _
E;y = H[’y(l’i‘*‘%A%) ~(x; — $Ax,)] = 8,%Y. (3)

Application of (2 and 8) to the basic equations (1), together with the splitting of the
velocity and temperature fields into spatial averages dlrectly resolved by the grld

74, *T, and into ‘subgrid-scale’ parts not resolved spatially, u; iu, T" =T~
provides a finite-difference formula programmable in an almost d1rect manner:
87, = 0, (4a)
0 - — g i~ . Ra — 1 3u
5 i+ & WU + 8wy = "&"P‘p;R—e% ("Tres—"T) 815 +9; (Reo ), (4b)
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The remaining derivatives are approximated according to (3). Adaptation to a
staggered grid requires a few additional averages in the convective terms in order to
approximate variables between two nodes. A weighted linear average ¥’ is used to
account for grids with variable mesh widths Az;:

y(@; + Ax;) Axy(x; + Az;) + y(x;) Ax; (x)

Azy(x; + Ax;) + Azy(z) (%)

yj(xj +3Az)) ~

This results in the following explicit finite-difference scheme, written without space-
averaging bars, where the superscript » refers to the time step, " = nAt:

~7 — — 1 7 n—1 Ra o Fivn
(@ —u1) [208 = — §,(wu) + §; (Reos’u — u) —TReE( Trep—"T)" 0y,

(6a)
_ -1
(T4~ 1) [2A8 = — &;(u; T + 6, (P o 8 T—’u’T) . (6d)
The pressure p™ is determined from a Pmsson equation
8,8,p™ = 8,47+ /248, (7)
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s0 that the new time-level velocities

wptt = A7 — (2A8) 6, p™ (8)
satisfy the continuity equation (4a). Equation (7) is solved by a fast Fourier transform.
Equations (64, b) correspond to & leapfrog scheme, starting with an Eulerian step and
interrupted by an averaging step after every n;, time steps (typically, n;, = 40). The
permissible size of the time step is determined from a linear stability analysis (Schu-
mann 197558).

The accuracy of this finite-difference scheme was thoroughly tested by Schumann
(1973) on equidistant and non-equidistant grids for non-buoyant flows. Highly non-
uniform grids were employed successfully in simulations of annular flows with small
ratios of radii (Grétzbach 1977). (The actual computer code is written for both
Cartesian and cylindrical co-ordinate systems.)

2.3. Turbulence assumptions

The well-known closure problem in connection with the Reynolds equations averaged

over time by analogy occurs in (4). The unknown shear stresses /u;u; and heat fluxes
i 1TT' appearing in (4) contain only the part of the turbulent exchange not resolved by
the grid. Thus they tend to zero, if highly resolving grids (Az; - 0) are used. This is
true in particular of applications to small Rayleigh numbers, since in these cases only
very large vortices are formed, which are of the magnitude of the channel width.

In all simulations reported below the subgrid-scale structure terms are neglected,

which means that ’m = ’?ZT' = 0. Thus the entire system of equations does not
contain a single adjustable parameter, except for the problem-identifying parameters
Ra and Pr, and for the choice of the grid. It must only be ensured that the mesh grid
resolves even the smallest relevant turbulence elements. It is shown in the appendix
that this assumption is valid for the finest grids used here.

2.4, Boundary conditions

In both horizontal directions of the plane channel considered, periodic boundary
conditions are used for all velocity components, pressure and temperature. The
respective periodicity lengths X, = IMAx, and X, = JMAx, are prescribed in the
number of meshes /M and JM, and the mesh widths Az, and Az,. For the diffusive
terms at the walls the no-slip wall conditions and the wall heat fluxes have been
formulated corresponding to the laminar-flow condition proposed by Gritzbach (1977)
and Grotzbach & Schumann (1979), which means that linear finite-difference approxi-
mations are used. The major drawback in this approximation is that extremely fine
meshes must be used in the x; direction near the wall to resolve the steep gradients in
the temperature field. This is especially true of high Rayleigh numbers. The boundary
condition for the pressure ¢p = 0 at the walls follows from (8) and the boundary
conditions u3*1 = @51 = 0 at the walls.

3. Initial values and case specifications

To start the time integration of the basic equations, initial values are required for the
velocity and temperature fields. In order to shorten the computer time required to
reach fully developed equilibrium, the statistical properties of the initial values should
be very close to the steady-state solutions. There is no general restriction in the
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Case Ra IM JM KM Ax, Az, Axg, NT bnax NM
1 1500 16 16 8 0-175 0-175 0-125 500 25-05 1
2 4000 16 16 8 0175 0:175 0-125 1060 71-45 1
3 7000 16 16 8 0-175 0-175 0-125 1060 84-95 1
4 87300 16 16 8 0-175 0-175 0-125 1060 85-4 1
5 87300 16 16 8 0-175 0-175 0-0625 1200 84-1 1
6 87300 16 16 16 0-175 0-175 0-02 1880 33:5 1
7 381225 16 16 16 0-175 0-175 0-02 1320 41-01 8
8 381225 32 16 16 0-175 0-175 0-02 920 28-49 8
9 381225 32 16 16 0-088 0-175 0-02 920 26-85 8

10 381225 16 2 16 0-175 0-175 0-02 2000 67-33 26
11 381225 32 2 16 0-175 0-175 0-02 2280 75-0 33
12 381225 32 32 16 0-088 0-088 0-02 3680 100-7 40
13 381225 32 32 32 0-088 0-088 0-01 5040 42-7 64
14 381225 64 32 32 0-044 0-088 0-01 3880 327 31

TaBLE 1. Case specifications and time intervals simulated. Az,, = Az,z_, = vertical grid
width near the wall. The complete vertical profile of Az, is given in table 4.

statistical properties of the initial values, except for the flow structures in these fields.
To avoid the pre-determination of special roll vortex patterns by the choice of initial
values, all velocity fields are set to zero at the time ¢ = 0. The temperature fields are
chosen in such a way that the vertical profiles of the statistical averages in the flow core
agree with the experimental results. The approximately linear temperature curves
found in the centre between the plates are linearly extrapolated to the walls. Random
temperature variations have been superimposed upon these temperature fields, with
maximum amplitudes of 7" = 4 0-05. This is necessary, as the onset of convection is
caused by a disturbance.

Further input data for the computer simulation of Bénard convection are the mole-
cular Prandtl number of air (Pr = 0-71), the Rayleigh number and the grid parameters
(table 1). The Rayleigh numbers in cases 1-3 were selected to represent at least one
simulation for each flow condition according to the flow regime diagram of Krishna-
murti (1973). The other cases were chosen for direct comparison with the experimental
results of Thomas & Townsend (1957). Different grids were chosen to analyse influences
of different mesh spacings on the simulated convection. Results by Lipps (1976) show
such influences, especially for low Rayleigh numbers. Therefore special emphasis was
put on finding the maximum-allowable grid width and the influence of the periodicity
lengths for the high-Rayleigh-number simulations. In particular, cases 12-14 have
been taken from Grétzbach (1980) to confirm the high-Rayleigh-number simulations
of this work.

4. Numerical results

Starting from initial values defined above, (8)-(8) were integrated in the time
domain until largely steady-state conditions, in a statistical sense, had been established
for a period suitable for evaluation. The respective number of time steps N7 and
problem duration time ¢, are indicated in table 1. The CPU times consumed on an
IBM 370/168 are about 460 s per mesh cell and time step, which results in a total CPU
time of 58 min, for example, for cases 8 and 9.



32 G. Grétzbach

I=4
A = 00625

lui

1=4
A=0-033
0-266

X3

i,;l,

J=4
A=0033
EM 0292

Ficure 1. Vertical sections of the temperature and velocity fields at ¢ = 68-4 for Ra = 4000. The
sectional planes (from top to bottom) are the (x,, ;)-plane, (x,, x;)-plane and the (x;, x;)-plane.
VKM is the maximum vector length, A is the contour-line increment. The mesh indices I, J
denote the positions of the cross-sections @, = (I —1) Az, and 2, = (J—1) Ax,.

4.1. Phenomenological evaluation of the results of simulation

The numerical results are compared qualitatively on the basis of contour-line and
vector representations of the instantaneous velocity and temperature fields (figure 1-7).
For the velocity field the isolines show the values of the component normal to the
drawing plane. The isoline increment A is constant. Non-negative values are repre-
sented by solid lines, negative values by dashed lines. The additional dashes indicate
the magnitude and directions of the velocities in the plotting plane. The origin of the
dashes is located at the respective nodal point of a mesh.

For the subcritical case with Ra = 1500 the convection caused by the initial
conditions tends to zero. The conduction-controlled temperature field remains
unchanged by the decreasing convection. The resultant stratification behaves in a
stable mode. This is in accordance with experiments performed for different Prandtl
numbers for Ra < 1708 (Brown 1973; Krishnamurti 1973; Silveston 1958),

Vertical sections of the velocity and temperature fields for Ra = 4000 are represented
in figure 1 for one of the last time steps of simulation. The temperature field undergoes
major distortions in the directions of convection. All fields are well arranged, which is
indicative of laminar convection. The related horizontal section in figure 2 indicates
the presence of vortex pairs whose horizontal axes extend diagonally through the grid.
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Ficure 2. Horizontal section of the velocity field at ¢ = 684 and x,(K = 4) = 0-438 for
Ra = 4000. A = 0:033 and VKM = 0-08. The figure consists of four identical plots. The
mesh index K denotes the position of this cross-section according to table 4 and

K-1
wK) = B Aayn) +$A(K).
n=

For better identification of this stationary flow regime this figure was composed out
of four identical plots. As a result, space-periodic enlargements and contractions of
the regions of upward and downward flows can be identified. This can be interpreted
as a so-called ‘skewed-varicose’ flow regime and is known to occur for larger Prandt!
numbers, as was shown by Busse & Clever (1979).

For Ra = 7000 the different sections of the velocity fields show that non-steady-state
three-dimensional vortex structures are formed (figures 3 and 4). This is a vortex pair
whose sense of rotation does not depend on time. The periodicity of the field as a
function of time can be deduced from the u, isolines in figure 4. It is obvious from the
horizontal sections that the axes of vortices pointing in the x, direction are deflected
in the #, direction with a period 7 = 16-9. The three-dimensional periodic flow found
here for Ra = 7000 agrees with the experimental results of Willis & Deardorff (1965)
and Krishnamurti (1973).

A vertical section of the temperature field has been included in figure 3. The
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FicURE 3. Vertical sections of the temperature and velocity fields for
I = 4 and Ra = 7000; (x,, z,)-plane.
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Ficure 4. Horizontal sections of the velocity fields at different times
for zy(K = 4) = 0-438 and Ra = 7000; A = 0-05.



Direct numerical simulation of Bénard convection 35

i
Pl
a—
F— =4
L A=0036
VKM 0-55
-8
o
L
—— J:4
-
L A=007
-
\WVKM 0-43
-
N -
|(<\\'\ ) N t
B Vo \\
DTN NN
” o~ N
14 —2 0 L TANN - VAT - -
/{// N \ 4 A\\ =~ \
L :\\\\\\\ (TR 7
_-M//,/' Cﬁ,\é\\\\\\,))))\L‘\\ L7 i
v ~ \ \ N 2744
e o SR\ o FANE
o mr T~ ~yl v < =~
-_;Z///;/%\\%\’J. l<;t: %U/J/:\\«((\/(\S:S:/{/‘/}x:c._
_;:r/@)\y\ (\\\; ﬁt‘:f//; F3— K=4
RERN < N YT T—  a=007
T ] 39 R 0376
: I
A . Ty 2.5 2%

FicUure 5. Vertical and horizontal sections of the velocity
field for ¢ = 67-3 and Ra = 87300; case 4.

isotherms are shifted in the directions of the flow. Higher heat-transfer values occur
locally in the vicinity of the stagnation points at the walls. Moreover, near these zones
the isotherms expand more strongly in the horizontal direction than for Ra = 4000.
Consequently, the vertical temperature profile in the middle between the upward and
downward flows shows a local change of sign in its vertical gradients.

The velocity field for Ra = 87 300 shown in figure 5 has no regular structures. The
randomized nature of the fields indicates a fully turbulent flow. This conclusion can
also be drawn from the time sequence of vertical sections through the temperature
field represented in figure 6. The upward movement of hot fluid and the downward
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FI1GURE 6. Vertical sections of the temperature field at different
times for I = 4 and Ra = 87300, case 4; (x,, x;)-plane.

movement of cold fluid is irregular and aperiodic. This is in accordance with experi-
mental results of Krishnamurti (1973) and Willis & Deardorff (1965), which show
turbulent convection at Re > 10000 for Pr = 0-71.

The vector and isoline representations in figure 7 for Ra = 381 225 largely corre-
spond to those in figures 5 and 6. However, the degree of irregularity has increased
slightly. Besides, the spatial extension of the structures encountered has decreased.
The spatial extension of the smallest structures recorded is comparable to the grid
width.

4.2. Statistical evaluation of the results of simulation
For quantitative comparison of the numerical results with the statistical data deter-
mined experimentally, the non-steady-state numerical results must be evaluated and

averaged appropriately. For this purpose, average values are formed over horizontal
planes. In some cases, these values in addition have been averaged over N .M time steps
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F1GURE 7. Vertical sections of the temperature and velocity fields at different
times for J = 4 and Ra = 381225, case 9; (z,, z3)-plane.

(table 1) to furnish long-term averages. In such time averaging the results for every
40th time step have been used. The notation for such averages is (y).

The Nusselt number has been evaluated on the basis of the dimensionless relation
Nu = (eonv + Geona)/Geona = {Gwy Beo Pr/{AT,) for the convective and conductive
heat fluxes. The results have been compiled in table 2. To compare these results with
experimental data the coefficient c, of the heat transfer law Nu = cha% has been
calculated and plotted (figure 8), as was proposed by Denton & Wood (1979). The
numerical results concerning cases with high spatial resolution are in agreement with
the interpolation formula given by Busse & Whitehead (1974): Nu = 0-19 x Ra%282,
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005 T T T T
102 103 10* 10° 10 107
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F16ure 8. Comparison of the normalized Nusselt numbers derived from the numerical simulations
with experimental results. 2d denotes the results for the approximately two-dimensional simu-
lations, cases 10 and 11, which are discussed in the appendix. ¥, Deardorff & Willis (1965), air;
V , Deardorff & Willis (1967), air; +, Gille (1967), air; x , Krishnamurti (1970), water; [], Malkus
(1954), water; O, Threlfall (1975), helium ; B, Brown (1973), air; BW, Busse & Whitehead (1974),
Pr = 20-200; CG, Chu & Goldstein (1973), water; F, Fitzjarrald (1976), air; GC, Goldstein &
Chu (1969), air; H, Hollands, Raithby & Konicek (1975), air; K, Krishnamurti (1973), air;
S, Silveston (1958), water; T, Threlfall (1975), helium; *, TURBIT-3, this work, air, case no.

+

The other experimental data deviate from each other and from the numerical
results.

In non-turbulent flows with Rayleigh numbers Ra < 10000 vortex systems are
formed that consist of vortex pairs with an overall diameter A. Owing to the fact that
A > D and the periodic boundary conditions, only discrete values of A can be obtained
from the numerical results. Depending on whether the axes of vortices are parallel to
the x, axis or to the x; axis or run diagonally through the grid, the following maximum
values can occur: A = X, X,, [(3X;)2+ (3X,)?]t. The possible values of A and the
observed ones have been included in table 3. The values indicated for the laminar cases
have been evaluated from figure 2 and 4. Upper bounds of the values of the turbulent
cases were obtained by evaluation of the two-point correlation Ry, in the x,-direction.
R, is defined as (no summation over ¢)

R (Z _ <ia2’i)(xlax2’ x3)i@zi)(x1+z, Lg» x3)>
()(7) ) = 112 .
( Uch (X, X, x3))

Figure 9 represents these two-point correlations for cases 6 and 8. At half the periodicity
length the correlations for case 6 with Ra = 87 300 still differ greatly from zero. This
means that either the selected periodicity length X, was assigned too low a value for
statistical decoupling within different zones of the flow volume recorded, or the axes
of vortices lie mainly in the x; direction. This plot at the most permits the conclusion
to be drawn that A ~ X,. The respective curves for case 8 with Ra = 381225 and the
double periodicity length X, = 5:6 tend towards zero for the distance z ~ 1X,.
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Ficure 9. Two-point correlations R;; of the velocity fluctuations *@; = '@,— (‘@) in the x,
direction for (a) Ra = 87300, case 6; and (b) Ra = 381225, case 8. (], RBy;; O, Roy; A, Ras.

A range for the upper bound for A can be estimated to be 1-75-1-86. This follows from
the distance between the extreme values of the same sign or from the assignec inter-
sections of the z-axis by E,s.

In figure 10 the numerical results of cases 2 and 3 have been compared with the
experimental results of Willis, Deardorff & Somerville (1972) and Brown (1973). The
value of Ra = 4000 is lower than the value observed most frequently, although the
grid would allow a higher value. The result for Ba = 7000 agices with the maximum
possible value for this grid.

Following the definition of the root-mean-square value

Yrms = YD =y~ )

the peaks of the vertical r.m.s. value profiles of the three velocity components derived
from the space- and time- dependent results have been represented in table 2 and
figure 11. Ifor Ra = 1500 all r.m.s. values are close to zero. Within the transition zone
to turbulent flow (e < 10%) the r.m.s. values increase strongly. The »; and u, com-
ponents should be equal in size. The dissimilar values show that the values indicated
suffer from a 20 9, uncertainty because of the low mesh number and on account of the
evaluation of only one time step (NM = 1, table 1). In the fully turbulent zone the
r.m.s. values are independent of the Rayleigh number. For comparison the experi-
mental results by Deardorff & Willis (1967) have been included in figure 11.

The influence of the Rayleigh number on the averaged vertical temperature profile
and on the r.m.s. temperature value is indicated for cases with sufficient spatial
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resolution in figure 12. The temperature profiles are more or less point-symmetrical
with respect to the channel centre. For Ba = 1500 the profile is linear. With increas-
ing Rayleigh number the gradient at the wall becomes steeper owing to the increasing
importance of convection, and the temperature profile inside the channel becomes
nearly constant. For Ba = 7000 and 87 300 temperature inversions are observed.
The r.m.s. temperature values are also shown in figure 12. With decreasing Rayleigh
number the peak moves away from the wall until it lies in the centre of the channel for
Ra = 4000. For Ra = 1500 the r.m.s. values over the whole zone are zero. While the
vertical temperature profiles are sufficiently well resolved by the predominately non-
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Ficure 12. Averaged vertical temperature (a¢) and r.m.s. temperature value (b) profiles for
different Rayleigh numbers. +, Ra = 1500, case 1; x, 4000, 2; A, 7000, 3; [J, 87300, 6;
O, 381225, 9.

equidistant vertical mesh distributions selected, finer resolution would be desirable
for a more accurate determination of the location of the r.m.s. temperature peaks (see
also the appendix).

5. Discussion of numerical results

The computer model used includes no adjustable parameters such as model con-
stants or empirical wall functions. The influence of the grids selected is discussed in the
appendix and in Grotzbach (1980). It becomes evident there that the spatial resolution
of most of the grids used in this work is sufficient for an accuracy comparable to that
usually obtained in laboratory experiments, despite the fact that the grids used for
cases 7-9 do not really resolve the smallest scales of turbulence. These are only resolved
by the grids of cases 1214, which give more accurate results. In this section significant
results will be discussed and some discrepancies between calculated and experimental
data, which seem to exist despite sufficient spatial resolution.

5.1. Discussion of phenomenological results

Qualitative evaluation of the numerical results shows that the flow caused by the
randomly disturbed initial fields disappears at a Rayleigh number below the critical
values as expected ; the layer is stable. At the next higher Rayleigh number, Ra = 4000,
a steady-state flow regime should develop; for example according to the flow regime
map of Krishnamurti (1973). That map, however, provides no information about the
dimensionality of this flow. Clever & Busse (1978) predicted theoretically a three-
dimensional flow regime, which they called ‘skewed-varicose’ instability. The existence
of this flow regime has been confirmed for higher Prandtl numbers in the experiments
of Busse & Clever (1979). Its wavelength has also been detected for Pr = 0-71 by
Clever & Busse (1978) in the experiments of Willis ef al. (1972). The numerical results
given in figure 2 show the features discussed above, thus confirming directly
the predictions of Clever & Busse (1978) for the Prandt! number under consideration.

If the Rayleigh number is increased to Ra = 7000, the three-dimensional flow field
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becomes periodic in time. The horizontal axes of the vortices are periodically distorted
into serpentines (see figure 4). As suggested by Lipps (1976), the period of oscillation
seems to depend strongly on the horizontal periodicity lengths. The periodicity lengths
prescribed do not allow the wavelengths observed in experiments to be recorded
(figure 10). Nevertheless, the period found here exactly fits the interpolation curve
given by Krishnamurti (1973). This difference in results between Lipps’ simulation
and the present work is due mainly to the initial conditions chosen. In this work the
vortex structures calculated are not given in the initial conditions, but are found as a
nearly independent result of the numerically simulated physics. Thus from among
the infinite number of possible wavelengths the optimal one can be developed
freely.

For the two highest Rayleigh numbers, the flow regime map of Krishnamurti (1973)
leads one to expect a fully turbulent convection. Indeed, the flow fields given in
figures 5-7 are aperiodic and without recognizable regular structures. For the highest
Rayleigh number (figures 7 and 16) the smallest scales are comparable to or a little bit
smaller than the grid width of case 9. Therefore the finer grids of cases 12-14 should be
used, or subgrid-scale structure models will be needed for this and higher Rayleigh
numbers.

5.2. Discussion of statistical results

5.2.1. Influence of the wavelength on the convective heat flux. Experimental results for
the characteristic vortex diameter of Willis ef al. (1972) and Brown (1973) show a
continuous increase, with increasing Rayleigh number, in the laminar-to-turbulent
transition zone (figure 10). A more stepwise increase at high Rayleigh numbers was
found by Fitzjarrald (1976) for a channel with a large aspect ratio. The same author
shows the dominant wavelength to decrease with increasing Rayleigh number for a
small aspect ratio.

The grids chosen here cannot reflect the maximum wavelengths observed, except
for the grid of case 2 (figure 10, table 3). No agreement can therefore be obtained with
experimental results, except for case 2. Nevertheless, the wavelengths found in the
transition zone are in accordance with the many possible values predicted by stability
theory. Consistent with the flow regime found for Ra = 4000, the wavelength (table 3)
is near the ‘skewed-varicose’ instability line in the stability map of Busse & Clever
(1979) and, for Ra = 7000, near the line of the oscillatory instability. In the fully
turbulent region the wavelengths decrease with increasing Rayleigh numbers. They
are smaller than in the transition zone because small periodicity lengths have been
prescribed. The influence of the periodicity lengths on the dominant wavelength is
therefore similar to that of the side walls in low-aspect-ratio experiments.

The experimental results and empirical correlations for the normalized Nusselt
number (figure 8) deviate from each other; in part there are considerable deviations.
For this Prandtl number and others it is still being discussed whether the slope for
Nu = f(Ra) undergoes many changes (Krishnamurti 1973; Willis et al. 1972; Brown
1973) or not (Koschmieder & Pallas 1974; Fitzjarrald 1976). It is supposed (see e.g.
Threlfall 1975; Denton & Wood 1979) that this might be influenced by the differences
in the finite spatial extension of the channels used, because very extensive vortex
structures have been observed by Deardorff & Willis (1967) in equipment of large
horizontal extension. From the work of Lipps & Somerville (1971) and Fitzjarrald
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(1976), for example, it is known that such large-scale horizontal flow patterns impede
the heat flux. At smaller aspect ratios the dominant wavelength decreases and,
consequently, the heat flux is enhanced.

The numerical results for the Nusselt number in figure 8 are at the upper boundary
of the scattering range of the experimental data. The results follow the empirical
relation by Busse & Whitehead (1974). Although this relation was derived from
experiments with Prandtl numbers between 20 and 200, it is nevertheless used for
comparison, since Silveston (1958) has shown that no influence of the Prandtl number
can be observed in laminar convection, and that the influence is extremely low
(Nu ~ Pr®%) in turbulent convection. According to §A.2 in the appendix, the
numerical results of case 9 should be lower by about 6 %, owing to the limited reso-
lution capabilities of the grid used. Yet all results are about 10 %, higher than the
experimental data for large aspect ratios, in accordance with the shorter wavelengths
developed. In the appendix no considerable influence of the periodicity lengths has
been found, except for the nearly two-dimensional simulations which lead to a further
decrease of wavelength and, consistently, to an increase in the Nusselt number.
Therefore one may assume for three-dimensional convection that the curve for high
Prandtl numbers is an upper limit for the Nusselt number at the Prandtl number of
air and at small aspect ratios. The empirical correlations for the Nusselt number should
include the aspect ratios or periodicity lengths as additional parameters.

5.2.2. Development of temperature-gradient reversals. Some of the mean temperature
distributions determined experimentally, for example by Gille (1967) and Chu &
Goldstein (1973), show gradient reversals in the central region of the channel for
Rayleigh numbers up to 5 x 105, This has been attributed to the coalescence of larger
numbers of warm ‘blobs’ near the cold wall and of cold ‘blobs’ near the warm wall.
The temperature profiles determined numerically for Ra = 7000 and 87 300 also show
gradient reversals (figure 12). For Ra = 381225 no inversions seem to exist in the
temperature profiles. Nevertheless, the eddy conductivity profile calculated for case 14
indicates that slight temperature inversions do exist at this Rayleigh number (Grétz-
bach 1980).

The corresponding contour-line plots (figures 3, 5, 6 and 16) allow the identification
of transient structures, which may be called ‘blobs’. There are narrow regions in the
central parts of the channel (see e.g. figure 16) with high velocities directed to the walls,
where the flow paths end in larger regions of low velocities. This is the mechanism by
which hot fluid is transported quickly to the cold wall, where it remains for some time,
losing its energy and coming into an equilibrium with the surrounding fluid. The same
holds true for cold fluid transported downwards. The possibility of studying such
local transient mechanisms easily is an important advantage of the direct numerical
simulation technique.

5.2.3. Consistency of computed turbulencedata. From a data collection by Deardorff &
Willis (1967) it can be deduced that the sum of the three r.m.s. values of the time- and
space-dependent velocity fluctuations for high Ra is independent of Ra in the present
normalization scheme. A similar result was found by Dubois & Bergé (1978) for the
transition range at a higher Prandtl number. The numerical results, especially for u,
and 7 (figure 11), are alsonearly independent of Ra. Major differences appear, however,
for the numerical and experimental r.m.s. temperature values. The experimental data
are Jower and tend to decrease slightly. These problems seem to be associated with the
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Ficure 13. Comparison with experimental results of the averaged vertical temperature (a)
and r.m.s. temperature value (b) profiles for Ra = 381225, case 9.

experimental data, because Fitzjarrald (1976) also obtained results that scattered
broadly.

Only those experimental data for which the Boussinesq approximation holds can be
used to compare vertical profiles. The temperature profiles of Thomas & Townsend
(1957) do not seem to satisfy this condition because of the lack of symmetry with
respect to the centre of the channel (figure 13). The data of Deardorff & Willis (1967)
obviously satisfy this condition. The numerical results agree with the experimental
data elaborated by those authors. The vertical profiles of the r.m.s. temperature values
(figure 13) determined by Thomas & Townsend (1957) are 50 %, lower than the other
data, and the peak is located at a greater distance from the wall. The numerical results
agree largely with the experiment by Deardorff & Willis (1967). However, the calcu-
lated maximum value is higher by about 30 9. In the appendix it is shown that this
deviation is not due to the selection of inadequate grids. Application of finer grids
reduces this difference by less than 4 9 (table 5). Figure 14 shows the profiles of the
r.m.s. values of velocity fluctuations. The differences in the numerical results for «,
and u, are less than 10 9,. The values measured by Deardorff & Willis (1967) are
almost exactly between the two curves. The r.m.s. values of u4 rise more slowly,
beginning at the wall, than the data measured by Deardorff, and they reach a higher
maximum value in the centre of the channel. However, Deardorff’s data for the vertical
component do not behave uniformly with respect to either the maximum value
(figure 11) or the gradient near the wall for different Rayleigh numbers (see Deardorff &
Willis 1967). :

Indeed, the numerical results can be confirmed by the profile of the vertical heat-
flux cross-correlation coefficient, which, by definition, contains r.m.s. values (figure 14).
Deardorff’s data show a strange suppression near the wall, exactly in the region of the
peak of the r.m.s. temperature profile, which is contained neither in the experimental
data of Adrian (1975) nor in the numerical result.

5.2.4. Efficiency of the method used. Comparison of the computer times of typically
one hour with those of Daly’s (1974) two-dimensional statistical turbulence model
yields the interesting finding that, for the same Rayleigh number, the three-dimensional
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Ficure 14. Comparison with experimental results of the vertical profiles of the r.m.s. velocity
values (a) and of the vertical heat-flux cross-correlation coefficient (b) for Ra = 381225, case 9.

simulation up to case 9 is faster by roughly one order of magnitude. The main reason
for the expenditure involved in Daly’s refined statistical turbulence model is its use of
seven additional transport equations to model the unknown turbulent shear stresses
and heat fluxes. The direct-simulation method does not call for model assumptions, and
is therefore suited to advance calculations of cases not previously investigated. Thus
these advantages of the direct method are further supplemented by major cost savings.

6. Concluding recommendations

For future investigations of Bénard convection by the method of direct numerical
simulation the following recommendations or requirements are derived from the
results discussed here: The method of deriving finite-difference formulas for the basic
equations using Gauss’ theorem is a successful tool for all cases in which highly non-
isotropic grids are used. It should be used for such simulations, in connection with a
staggered grid, because no major approximations are necessary. To avoid the strong
influence of the initial conditions and periodicity lengths mentioned by several authors,
the initial fields should be mostly random and must not include any special structures.
Depending on the problem at hand, the periodicity lengths of the grids should not be
below the highest values used in this work. In the zones near the wall finer meshes are
desirable, if one wants to achieve better spatial resolution of the maximum values of
velocity and temperature variations, or if one wants to investigate fluids with other
Prandtl numbers.

If it is not possible to refine the grid in order to simulate convection at higher
Rayleigh numbers, subgrid-scale structure models should be used. Verifications of
these models can only be made by comparison with calculations without subgrid-scale
structure models for low Rayleigh numbers, because really comprehensive detailed
experimental information, especially for temperature statistics, is missing. The
normalization used here allows direct comparison of results involving high and low
Rayleigh numbers.
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Case KM K=1 2 3 4 5 6 7 8
1-4 8 0-125 0-125 0-125 0-125 ¢ 0-125 0-125 0-125 0-125
5 8 0-0625 0-125 0-125 0-1875 ¢ 0-1875 0-125 0-125 0-0625

6-12 16 0-02 0-03 0-045 0-065 0-08 0-08 0-09 0-09¢c

TaBLE 4. Distribution of the vertical mesh width Az; over the vertical mesh index K. ‘¢’ marks
the centre of the channel with respect to which grids are symmetrical. The grids of cases 13 and
14 are derived from cases 6—12 by halving Ax,.

Appendix. Influences of the grid
A. 1. Introduction

The grids that can be realized on present-day computer systems delimit the accurate
description of short-wave events, on the one hand, and long-wave events, on the other.
For example the pronounced changes of the vertical temperature gradient near the
wall and the smallest vortices, whose scales decrease with increasing Rayleigh number,
require very short mesh widths. The large-scale structures observed in many experi-
ments, and the maximum possible wavelength of the roll vortices, according to
stability analysis, depend on the length of periodicity included in the simulation. The
influence of both constraints will be discussed below using the example of the results
of cases 4-14. The high-resolution cases 1214 are discussed in more detail in Grétzbach
(1980).

A. 2. Limited simulation of minimum wavelengths

A.2.1. Influence of mesh-width distribution in the vertical direction. Three different
grids are used at Ra = 87300, cases 4~6, which differ most strongly in the vertical
mesh width Az, in the zone near the wall (K = 1,2 and K = KM — 1, KM) (table 4),
The Nusselt number (table 2) shows a non-uniform tendency towards lower values with
increasing resolution in the zone near the wall. Figure 8 clearly shows the maximum
value (for case 4) to be too high. Obviously Az,,, is not sufficient to resolve adequately
the temperature gradient at the wall. The comparison of the three related vertical
temperature profiles in figure 15 shows comparable results for cases 5 and 6 only.

The r.m.s. values of the velocity fluctuations (figure 11 and table 2) do not show
distinct tendencies. By contrast, the r.m.s. temperature values exhibit an increasing
tendency with increasing resolution. In case of really insufficient spatial resolution it
should decrease; see below. This is due to volume integration according to (2), which
implies that the peak of the r.m.s. value profile, which is closely limited in space, is
flattened with increasing mesh widths (figure 15). Thus, if the results are interpreted
correctly, the apparent rise does not indicate a lack of simulation. (The slight decrease
of r.m.s. temperature values to the next higher Rayleigh number in figure 12 is also
attributable to volume averaging because of the smaller spatial extension of the peak.)

A.2.2. Influence of mesh width in the horizontal direction. The influence of horizontal
mesh widths can be investigated for cases 7, 9, 12 and 13, 14 at Ra = 381225. In each
case, approximately the same periodicity lengths X , have been used by successively
halving one of the mesh widths Az; (table 1). In cases 12-14, where resolution is better,
the flow structures appearing in the contour line plots (figure 16) are comparable
qualitatively with those of case 9 (figure 7); the only difference being that the isolines
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Fiaure 15. Influence on the vertical temperature (@) and r.m.s. temperature value (b) profiles at
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are smoother owing to the larger number of mesh cells. As to quantitative results, the
Nusselt number is about 10 9, lower than in case 7 and 6 9, lower than in case 9
(table 5). It can be seen from figure 8 that the lowest numerical results come close to
the experimental data, but that the deviations are still about 10 %,.

In all of the high-resolution cases averaging was done over a larger number NM of
time steps (table 1). Nevertheless, statistical evidence of these average values is still
limited, as can be seen from the standard deviations of the results given in table 5. The
r.m.s. values of the velocity fluctuations scatter considerably, but show no distinct
dependency on grid mesh widths. The r.m.s. temperature values seem to show a non-
uniform, slightly decreasing tendency with increasing resolution, but the results of
cases 9 and 14, for example, differ by less than 4 %,. Thus, we may conclude that the
grid in cases 7 and 8 has an insufficient spatial resolution. The grid in case 9 comes
close to the limit of resolution. It leads to uncertainties of, typically, only 6 %,.

A. 3. Limaited simulation of maximum wavelengths

A. 3.1, Influence of the periodicity length. The periodicity lengths X, and X, should
be prescribed at such high values that the events in the centre of the channel volume
congsidered are not coupled statistically to the events at the boundaries. The extent to
which the periodicity length X; = 2-8, which is used mostly, influences the results
can be evaluated by comparison of cases 7-9 with Ra = 381225 (tables 1 and 2).
Cases 7 and 8 differ only in the mesh number I} in ‘he z; direction, and thus by a
factor of 2 in periodicity lengths X, = I.M Ax,.

Qualitative comparison of some isoline and vector plots for case 8 with the greatest
periodicity length (figure 17) and the plots for case 9 (figure 7) leads to comparable
dimensions for the structures. No large-scale structures are formed in case 8. The
quantitative comparison of cases 7 and 8 in table 2 does not reveal any influence. The
Nusselt number remains unaffected by X, like the relatively highly scattering r.m.s.
values of the velocity and temperature fluctuations.

A.3.2. Influence of three-dimensionality. Problems were mentioned in §1 which
above all occur in two-dimensional simulation, such as the tendency towards higher
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Case h Nu (Ot (Ot (8Dt (T
7 0-1242 775+ 0:35 0-163+0-010 0-18040-018 0-2074+0-012 ©0-166+ 0-007
9 0-0987 7-44+4+ 029 0-1514£0-008 0-16340-016 0:207+£0-009 0-157 4 0-006

12 0-0785 6:80+0-26  0-202+0:014 0-162+0-010 0-1994+0-005 0-159+ 0-005
13 0-0623 7-:04+0-30 0166+ 0008 0-170+0-012 0-203+0-012 0-152 £ 0-004
14 0-0495 6:93+0-16 0-166+0-010 0-170+0-009 0-21440-011 0-15140-005

TasrLE 5. Influence of the mean grid width & = (AfcleZE)% (—A?3 = 1/KM) on the Nusselt
number and maximum r.m.s. values of velocity and temperature fluctuations at Ba = 381225




50

G. Grotzbach

vy

J=4
t=20237

A=00625

t=121-457
A=00625

t=22:655
A =0-0625

AR &l
Ay A 0 . 1o
;};;/z @ . V\g r=722:655
R ({K\,@ ;<f>r = A=00625
YA —~E30km 0493
i N
: 56
il;i
K=4
£=22:655
A=00625
VKM 0-398
.

Ficure 17. Vertical and horizontal sections of the temperature and velocity fields at

different times for Ra = 381225, case 8, (v, z3)-plane and (x,, x,)-plane.

Nusselt numbers and shorter wavelengths. From the results of cases 10and 11 it appears
that an analogous experience with TURBIT can be made in two-dimensional simu-
lation. Two-dimensional simulations are approximated here by a reduction to JM = 2
(table 1), which results in stronger statistical coupling in the xz, direction. In periodicity
lengths X, these cases correspond to cases 7 and 8.

In quantitative comparison of the numerical results for cases 10 and 11 the periodi-

city length X, exerts practically no visible influence (table 2). By contrast, both cases
differ quite remarkably from the three-dimensional simulations 7 and 8. The charac-
teristic vortex dimension A (table 3) is much smaller in the two-dimensional case,
although much larger vortices could develop because of the greater periodicity length.
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This was also observed by Lipps & Somerville (1971) in pure two-dimensional simu-
lations. The Nusselt numbers are much too high (see table 2 and figure 8). According
to Lipps & Somerville (1971) the Nusselt number can only be improved by forced
fitting of A.

The r.m.s. values of the temperature fluctuations do not undergo any modification
(table 2). Consequently the buoyancy term in the momentum equation remains un-
changed. Since the velocity fluctuations in the a, direction are strongly attenuated,
owing to the short periodicity length X, = JM Az, = 0-35, the turbulence energy
is distributed essentially among the #, and wu, components only. Therefore the
turbulence-energy profiles (half the sum of squares of the r.m.s. values) differ by only
10 %, at the maximum, although the u, and u;r.m.s. values are too high (figure 11). The
vertical heat-flux cross-correlation coefficients (table 2) are unchanged. They lie in a
realistic range, despite erroneous u, r.m.s. values. The reason is that the Nusselt
number as a measure of the dominant turbulent heat flux is too high by approximately
the same factor as the u r.m.s. value,

A. 4. Conclusions from the influences of the grid

Investigation of the limited resolution for short wavelengths of the grids led to the
following results. Assignment to the Rayleigh numbers of the vertical mesh division
selected was considered appropriate. Only two exceptions were found. Firstly for the
vertical division of the grid of case 4, which created equidistant meshes, the slightly
high Nusselt number and the temperature profile indicate an insufficient resolution of
the vertical temperature gradients at the walls. Secondly, halving the horizontal mesh
width at the maximum Rayleigh number produced a minor quantitative influence on
the general grid resolution capability. From several results of cases 12-14 the con-
clusion can be drawn that the grid of case 9 comes close to the limit of resolution for the
smallest vortices occurring. Thus cases 7 and 8 have insufficient spatial resolutions.
At higher Rayleigh numbers subgrid-scale structure models will be necessary with
most of the grids used here. The theory of calculating the coefficients of the subgrid-
scale heat-flux model available in the TURBIT-3 code has been proven to be a proper
tool for assessing the spatial resolution capabilities of the grid chosen (Grétzbach 1980).

The limited resolution for high wavelengths had no special effect. It was reflected
quantitatively only in small characteristic vortex dimensions and correlation lengths,
respectively. Thus the periodicity length seems to have a similar influence on the
characteristic wavelength as the aspect ratio in finite channels, because Fitzjarrald
(1976) also found decreasing dominant wavelengths with increasing Ra in low-aspect-
ratio experiments. Effects on other statistical data of the turbulence fields at high
Rayleigh numbers do not appear. Experience accumulated by other authors is repro-
duced here in approximately two-dimensional simulations, for example the tendency
towards higher Nusselt numbers and shorter wavelengths. Thus the insensitivity to
grid parameters observed in the other cases is a physical result reproduced correctly
by the computer program.
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